Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Divers ; 28(1): 229-248, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104301

RESUMO

A synthetic route leading to densely functionalized 2-oxopiperazines is presented. The strategy employs a 5-center-4-component variant of Ugi multicomponent reaction followed by a deprotection/cyclization sequence. N-Boc-α-amino aldehydes were used for the first time as carbonyl components in a key Ugi 5-center-4-component reaction (U-5C-4CR). It is shown that the presented synthetic route can lead to rigid, heterocyclic scaffolds, as demonstrated by the synthesis of tetrahydro-2H-pyrazino[1,2-a]pyrazine-3,6,9(4H)-trione ß-turn mimetic and derivatives of 1,6-dioxooctahydropyrrolo[1,2-a]pyrazine and 3,8-dioxohexahydro-3H-oxazolo[3,4-a]pyrazine.


Assuntos
Aldeídos , Pirazinas , Ciclização
2.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806175

RESUMO

Short peptides have great potential as safe and effective anticancer drug leads. Herein, the influence of short cyclic peptides containing the Pro-Pro-Phe-Phe sequence on patient-derived melanoma cells was investigated. Cyclic peptides such as cyclo(Leu-Ile-Ile-Leu-Val-Pro-Pro-Phe-Phe-), called CLA, and cyclo(Pro-homoPro-ß3homoPhe-Phe-), called P11, exert the cytotoxic and the cytostatic effects in melanoma cells, respectively. CLA was the most active peptide as it reduced the viability of melanoma cells to 50% of control at about 10 µM, whereas P11 at about 40 µM after 48 h incubation. Interestingly, a linear derivative of P11 did not induce any effect in melanoma cells confirming previous studies showing that cyclic peptides exert better biological activity compared to their linear counterparts. According to in silico predictions, cyclic tetrapeptides show a better pharmacokinetic and toxic profile to humans than CLA. Notably, the spatial structure of those peptides containing synthetic amino acids has not been explored yet. In the Cambridge Structural Database, there is only one such cyclic tetrapeptide, cyclo((R)-ß2homoPhe-D-Pro-Lys-Phe-), while in the Protein Data Bank-none. Therefore, we report the first crystal structure of cyclo(Pro-Pro-ß3homoPhe-Phe-), denoted as 4B8M, a close analog of P11, which is crucial for drug discovery. Comparative molecular and supramolecular analysis of both structures was performed. The DFT findings revealed that 4B8M is well interpreted in the water solution. The results of complex Hirshfeld surface investigations on the cooperativity of interatomic contacts in terms of electrostatic and energetic features are provided. In short, the enrichment ratio revealed O…H/H…O and C…H/H…C as privileged intercontacts in the crystals in relation to basic and large supramolecular H-bonding synthon patterns. Furthermore, the ability of self-assemble 4B8M leading to a nanotubular structure is also discussed.


Assuntos
Melanoma , Peptídeos Cíclicos , Dipeptídeos , Humanos , Melanoma/tratamento farmacológico , Peptídeos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia
3.
Bioorg Chem ; 119: 105560, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34942467

RESUMO

The [2-formyl-4-(trifluoromethyl)phenyl]boronic acid as well as its benzoxaborole and bis(benzoxaborole) derivatives were obtained and their properties studied. The 2-formyl compound displays an unusual structure in the crystalline state, with a significant twist of the boronic group, whereas in DMSO solution it tautomerizes with formation of a cyclic isomer. All the studied compounds exhibit relatively high acidity as well as a reasonable antimicrobial activity. Docking studies showed interactions of all the investigated compounds with the binding pocket of Candida albicans LeuRS. High activity against Bacillus cereus was determined for the 2-formyl compound as well as for the novel bis(benzoxaborole), whereas the studied benzoxaborole shows high antifungal action with MIC values equal to 7.8and 3.9 µg/mL against C. albicans and A. niger respectively. None of the studied compounds exhibits reasonable activity against E. coli.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Aspergillus niger/efeitos dos fármacos , Bacillus cereus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
4.
Int J Mol Sci ; 22(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066719

RESUMO

A new ligand for 5-HT1A and 5-HT7 receptors, an arylpiperazine salicylamide derivative with an inflexible spacer, is investigated to identify preferred fragments capable of creating essential intermolecular interactions in different solvates. To fully identify and characterize the obtained crystalline materials, various methods including powder and single-crystal X-ray diffraction, solid-state NMR, and thermal analysis were employed, supplemented by periodic ab initio calculations. The molecular conformation in different solvates, types, and hierarchy of intermolecular interactions as well as the crystal packing were investigated to provide data for future research focused on studying protein-ligand interactions. Based on various methods of crystal structure analysis, including the interaction energy calculation and programs using an artificial neural network, a salicylamide fragment was found to be crucial for intermolecular contacts, mostly of dispersion and electrostatic character. A supramolecular 2D kite-type layer of {4,4} topology was found to form in crystals. The closed voids between layers contain disordered solvents, very weakly interacting with the molecule and the layer. It has been postulated that the separation of the layers might be influenced by an increase in temperature or the size of the solvent; hence, only methanol and ethanol hemi-solvates could be obtained from a series of various alcohols.


Assuntos
Receptores de Serotonina/química , Salicilamidas/química , Solventes/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Dimerização , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Conformação Molecular , Eletricidade Estática , Termogravimetria , Difração de Raios X
5.
Front Chem ; 9: 679776, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055746

RESUMO

Targeting the polyamine biosynthetic pathway by inhibiting ornithine decarboxylase (ODC) is a powerful approach in the fight against diverse viruses, including SARS-CoV-2. Difluoromethylornithine (DFMO, eflornithine) is the best-known inhibitor of ODC and a broad-spectrum, unique therapeutical agent. Nevertheless, its pharmacokinetic profile is not perfect, especially when large doses are required in antiviral treatment. This article presents a holistic study focusing on the molecular and supramolecular structure of DFMO and the design of its analogues toward the development of safer and more effective formulations. In this context, we provide the first deep insight into the supramolecular system of DFMO supplemented by a comprehensive, qualitative and quantitative survey of non-covalent interactions via Hirshfeld surface, molecular electrostatic potential, enrichment ratio and energy frameworks analysis visualizing 3-D topology of interactions in order to understand the differences in the cooperativity of interactions involved in the formation of either basic or large synthons (Long-range Synthon Aufbau Modules, LSAM) at the subsequent levels of well-organized supramolecular self-assembly, in comparison with the ornithine structure. In the light of the drug discovery, supramolecular studies of amino acids, essential constituents of proteins, are of prime importance. In brief, the same amino-carboxy synthons are observed in the bio-system containing DFMO. DFT calculations revealed that the biological environment changes the molecular structure of DFMO only slightly. The ADMET profile of structural modifications of DFMO and optimization of its analogue as a new promising drug via molecular docking are discussed in detail.

6.
Molecules ; 26(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540851

RESUMO

New pharmaceutically acceptable salts of trazodone (trazodone hydrogen bromide and trazodone 1-hydroxy-2-naphthonic acid) for the treatment of central nervous system disorders are synthesized and described. Although trazodone salts are poorly crystalline, single-crystal X-ray diffraction data for trazodone 1-hydroxy-2-naphthonic acid were collected and analyzed as well as compared to the previously described crystal structure of commercially available trazodone hydrochloride. The powder samples of all new salts were characterized by Fourier transform infrared spectroscopy, X-ray diffraction and 13C solid-state nuclear magnetic resonance spectroscopy. Spectroscopic studies were supported by gauge including projector augmented wave (GIPAW) calculations of carbon chemical shielding constants. The main goal of our research was to find salts with better physicochemical properties and to make an attempt to associate them with both the anion structure and the most prominent interactions exhibited by the protonated trazodone cation. The dissolution profiles of trazodone from tablets prepared from various salts with lactose monohydrate were investigated. The studies revealed that salts with simple anions show a fast release of the drug while the presence of more complex anion, more strongly interacting with the cation, effects a slow-release profile of the active substance and can be used for the preparation of the tables with a delay or prolonged mode of action.


Assuntos
Sais/química , Trazodona/química , Modelos Moleculares , Conformação Molecular
7.
Molecules ; 25(24)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352986

RESUMO

Benzoxaboroles emerged recently as molecules of high medicinal potential with Kerydin® (Tavaborole) and Eucrisa® (Crisaborole) currently in clinical practice as antifungal and anti-inflammatory drugs, respectively. Over a dozen of 3-amino benzoxaboroles, including Tavaborole's derivatives, have been synthetized and characterized in terms of their activity against Candida albicans as a model pathogenic fungus. The studied compounds broaden considerably the structural diversity of reported benzoxaboroles, enabling determination of the influence of the introduction of a heterocyclic amine, a fluorine substituent as well as the formyl group on antifungal activity of those compounds. The determined zones of the growth inhibition of examined microorganism indicate high diffusion of majority of the studied compounds within the applied media as well as their reasonable activity. The Minimum Inhibitory Concentration (MIC) values show that the introduction of an amine substituent in position "3" of the benzoxaborole heterocyclic ring results in a considerable drop in activity in comparison with Tavaborole (AN2690) as well as unsubstituted benzoxaborole (AN2679). In all studied cases the presence of a fluorine substituent at position para to the boron atom results in lower MIC values (higher activity). Interestingly, introduction of a fluorine substituent in the more distant piperazine phenyl ring does not influence MIC values. As determined by X-ray studies, introduction of a formyl group in proximity of the boron atom results in a considerable change of the boronic group geometry. The presence of a formyl group next to the benzoxaborole unit is also detrimental for activity against Candida albicans.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Antifúngicos/síntese química , Antifúngicos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular
8.
Acta Crystallogr C Struct Chem ; 76(Pt 4): 328-345, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32229714

RESUMO

Recently, fluorenylmethoxycarbonyl (Fmoc) amino acids (e.g. Fmoc-tyrosine or Fmoc-phenylalanine) have attracted growing interest in biomedical research and industry, with special emphasis directed towards the design and development of novel effective hydrogelators, biomaterials or therapeutics. With this in mind, a systematic knowledge of the structural and supramolecular features in recognition of those properties is essential. This work is the first comprehensive summary of noncovalent interactions combined with a library of supramolecular synthon patterns in all crystal structures of amino acids with the Fmoc moiety reported so far. Moreover, a new Fmoc-protected amino acid, namely, 2-{[(9H-fluoren-9-ylmethoxy)carbonyl](methyl)amino}-3-{4-[(2-hydroxypropan-2-yl)oxy]phenyl}propanoic acid or N-fluorenylmethoxycarbonyl-O-tert-butyl-N-methyltyrosine, Fmoc-N-Me-Tyr(t-Bu)-OH, C29H31NO5, was successfully synthesized and the structure of its unsolvated form was determined by single-crystal X-ray diffraction. The structural, conformational and energy landscape was investigated in detail by combined experimental and in silico approaches, and further compared to N-Fmoc-phenylalanine [Draper et al. (2015). CrystEngComm, 42, 8047-8057]. Geometries were optimized by the density functional theory (DFT) method either in vacuo or in solutio. The polarizable conductor calculation model was exploited for the evaluation of the hydration effect. Hirshfeld surface analysis revealed that H...H, C...H/H...C and O...H/H...O interactions constitute the major contributions to the total Hirshfeld surface area in all the investigated systems. The molecular electrostatic potentials mapped over the surfaces identified the electrostatic complementarities in the crystal packing. The prediction of weak hydrogen-bonded patterns via Full Interaction Maps was computed. Supramolecular motifs formed via C-H...O, C-H...π, (fluorenyl)C-H...Cl(I), C-Br...π(fluorenyl) and C-I...π(fluorenyl) interactions are observed. Basic synthons, in combination with the Long-Range Synthon Aufbau Modules, further supported by energy-framework calculations, are discussed. Furthermore, the relevance of Fmoc-based supramolecular hydrogen-bonding patterns in biocomplexes are emphasized, for the first time.


Assuntos
Aminoácidos/química , Fluorenos/síntese química , Metiltirosinas/química , Fenilalanina/química , Aminoácidos/síntese química , Simulação por Computador , Cristalografia por Raios X , Fluorenos/química , Ligação de Hidrogênio , Conformação Molecular , Inquéritos e Questionários
9.
Molecules ; 25(5)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138329

RESUMO

The success of innovative drugs depends on an interdisciplinary and holistic approach to their design and development. The supramolecular architecture of living systems is controlled by non-covalent interactions to a very large extent. The latter are prone to extensive cooperation and like a virtuoso play a symphony of life. Thus, the design of effective ligands should be based on thorough knowledge on the interactions at either a molecular or high topological level. In this work, we emphasize the importance of supramolecular structure and ligand-based design keeping the potential of supramolecular H-bonding synthons in focus. In this respect, the relevance of supramolecular chemistry for advanced therapies is appreciated and undisputable. It has developed tools, such as Hirshfeld surface analysis, using a huge data on supramolecular interactions in over one million structures which are deposited in the Cambridge Structure Database (CSD). In particular, molecular interaction surfaces are useful for identification of macromolecular active sites followed by in silico docking experiments. Ornithine-derived compounds are a new, promising class of multi-targeting ligands for innovative therapeutics and cosmeceuticals. In this work, we present the synthesis together with the molecular and supramolecular structure of a novel ornithine derivative, namely N-α,N-δ)-dibenzoyl-(α)-hydroxymethylornithine, 1. It was investigated by modern experimental and in silico methods in detail. The incorporation of an aromatic system into the ornithine core induces stacking interactions, which are vital in biological processes. In particular, rare C=O…π intercontacts have been identified in 1. Supramolecular interactions were analyzed in all structures of ornithine derivatives deposited in the CSD. The influence of substituent was assessed by the Hirshfeld surface analysis. It revealed that the crystal packing is stabilized mainly by H…O, O…H, C…H, Cl (Br, F)…H and O…O interactions. Additionally, π…π, C-H…π and N-O…π interactions were also observed. All relevant H-bond energies were calculated using the Lippincott and Schroeder H-bond model. A library of synthons is provided. In addition, the large synthons (Long-Range Synthon Aufbau Module) were considered. The DFT optimization either in vacuo or in solutio yields very similar molecular species. The major difference with the relevant crystal structure was related to the conformation of terminal benzoyl C15-C20 ring. Furthermore, in silico prediction of the extensive physicochemical ADME profile (absorption, distribution, metabolism and excretion) related to the drug-likeness and medicinal chemistry friendliness revealed that a novel ornithine derivative 1 has the potential to be a new drug candidate. It has shown good in silico absorption and very low toxicity.


Assuntos
Ornitina/química , Bases de Dados Factuais , Ligação de Hidrogênio , Conformação Molecular , Estrutura Molecular
10.
Molecules ; 25(4)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059517

RESUMO

2-Formylphenylboronic acids display many interesting features, not only from synthetic but also from an application as well as structural points of view. 5-Trifluoromethyl-2-formyl phenylboronic acid has been synthesized and characterized in terms of its structure and properties. The presence of an electron-withdrawing substituent results in a considerable rise in the acidity in comparison with its analogues. In some solutions, the title compound isomerizes with formation of the corresponding 3hydroxybenzoxaborole. Taking into account the probable mechanism of antifungal action of benzoxaboroles, which blocks the cytoplasmic leucyl-tRNA synthetase (LeuRS) of the microorganism, docking studies with the active site of the enzymes have been carried out. It showed possible binding of the cyclic isomer into the binding pocket of Candida albicans LeuRS, similar to that of the recently approved benzoxaborole antifungal drug (AN2690, Tavaborole, Kerydin). In case of Escherichia coli LeuRS, the opened isomer displays a much higher inhibition constant in comparison with the cyclic one. The antimicrobial activity of the title compound was also investigated in vitro, showing moderate action against Candida albicans. The compound reveals higher activity against Aspergillus niger as well as bacteria such as Escherichia coli and Bacillus cereus. In case of Bacillus cereus, the determined Minimum Inhibitory Concentration (MIC) value is lower than that of AN2690 (Tavaborole). The results confirm potential of 2-formylphenylboronic acids as antibacterial agents and give a hint of their possible mechanism of action.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Benzaldeídos/farmacologia , Ácidos Borônicos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Benzaldeídos/síntese química , Benzaldeídos/química , Ácidos Borônicos/síntese química , Ácidos Borônicos/química , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Leucina-tRNA Ligase/antagonistas & inibidores , Testes de Sensibilidade Microbiana
11.
RSC Adv ; 9(44): 25368-25376, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35530113

RESUMO

A one-pot, Cu-catalyzed direct C-H arylselenation protocol using elemental Se and aryl iodides was developed for nitro-substituted, N-alkylated pyrazoles, imidazoles and other heterocycles including 4H-chromen-4-one. This general and concise method allows one to obtain a large number of unsymmetrical heteroaryl selenides bearing a variety of substituents. The presence of the nitro group was confirmed to be essential for the C-H activation and can also be used for further functionalisation and manipulation. Several examples of heteroannulated benzoselenazines were also synthesized using the developed synthetic protocol.

12.
Acta Crystallogr C Struct Chem ; 74(Pt 11): 1509-1517, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30398208

RESUMO

Halogen atoms in molecular crystals may be involved in various interactions, often playing a very important role in structure stabilization. By introducing electron-donating groups, such as NH2, the electron density of the molecule is changed and thus interactions with the bromine substituent may alter. Herein, the crystal structures of meta-bromonitrobenzene and its NH2-substituted derivatives are analyzed. In all four described structures, namely m-bromonitrobenzene [Charlton & Trotter (1963). Acta Cryst. 16, 313], 4-bromo-2-nitroaniline (C6H5BrN2O2, 1), 2-bromo-6-nitroaniline (2) and 2-bromo-4-nitroaniline [Arshad et al. (2009). Acta Cryst. E65, o480], the Br atom is engaged in different interactions (Br...π, Br...O, Br...Br and C-H...Br, respectively). The Hirshfeld surface analysis (HS) and Reduced Density Gradient NonCovalent Interaction (RDG NCI) plots are used to prove the relevance, directionality and stabilizing nature of these interactions. Their modifications have been associated with the position of the amino group in the molecular structure and its influence on charge distribution analyzed with electrostatic potential surfaces (EPS). The diversification of the interactions has been correlated with a σ-hole potential value that enables a switching of the Br-atom character from electrophilic to nucleophilic.

13.
J Phys Chem A ; 122(7): 1896-1904, 2018 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-29377699

RESUMO

The influence of a solvent on the substituent effect (SE) in 1,4-disubstituted derivatives of benzene (BEN), cyclohexa-1,3-diene (CHD), and bicyclo[2.2.2]octane (BCO) is studied by the use of polarizable continuum model method. In all X-R-Y systems for the functional group Y (NO2, COOH, OH, and NH2), the following substituents X have been chosen: NO2, CHO, H, OH, and NH2. The substituent effect is characterized by the charge of the substituent active region (cSAR(X)), substituent effect stabilization energy (SESE), and substituent constants σ or F descriptors, the functional groups by cSAR(Y), whereas π-electron delocalization of transmitting moieties (BEN and CHD) is characterized by a geometry-based index, harmonic oscillator model of aromaticity. All computations were carried out by means of B3LYP/6-311++G(d,p) method. An application of quantum chemistry SE models (cSAR and SESE) allows to compare the SE in water solutions and in the gas phase. Results of performed analyses indicate an enhancement of the SE by water. The obtained Hammett-type relationships document different nature of interactions between Y and X in aromatic and olefinic systems (a coexistence of resonance and inductive effects) than in saturated ones (only the inductive effect). An increase of electric permittivity clearly enhances communications between X and Y for BEN and CHD systems.

14.
Acta Crystallogr C Struct Chem ; 73(Pt 11): 889-895, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29111515

RESUMO

The comprehensive description of the crystal structure of a novel 1:1 cocrystal of 3,4,5-trifluorophenylboronic acid with urea, C6H4BF3O2·CH4N2O, is presented. Both components are good candidates for crystal engineering as they can create a variety of supramolecular synthons. The preference for the formation of different hetrosynthons is verified based on theoretical calculations. The syn-anti conformation of boronic acid has been found to be the most favourable in the formation of intermolecular interactions with urea. Moreover, the distortions present in the boron coordination sphere have been described quantitatively based on experimental data according to bond-valence vector model calculations. The results revealed that the deformation of the sphere is typical for a syn-anti conformation of boronic acids. The supramolecular structure of the cocrystal is composed of large synthons in the form of layers made up of O-H...O and N-H...O hydrogen bonds. The layers are joined via N-H...F hydrogen bonds which are unusual for urea cocrystal structures.

15.
Artigo em Inglês | MEDLINE | ID: mdl-27048726

RESUMO

The systematic analysis of the geometry of three-coordinate boron in boronic acid derivatives with a common [CBO2] skeleton is presented. The study is based on the bond-valence vector (BVV) model [Zachara (2007). Inorg. Chem. 46, 9760-9767], a simple tool for the identification and quantitative estimation of both steric and electronic factors causing deformations of the coordination sphere. The empirical bond-valence (BV) parameters in the exponential equation [Brown & Altermatt (1985). Acta Cryst. B41, 244-247] rij and b, for B-O and B-C bonds were determined using data deposited in the Cambridge Structural Database. The values obtained amount to rBO = 1.364 Å, bBO = 0.37 Å, rBC = 1.569 Å, bBC = 0.28 Å, and they were further used in the calculation of BVV lengths. The values of the resultant BVV were less than 0.10 v.u. for 95% of the set comprising 897 [CBO2] fragments. Analysis of the distribution of BVV components allowed for the description of subtle in- and out-of plane deviations from the `ideal' (sp(2)) geometry of boron coordination sphere. The distortions specific for distinct groups of compounds such as boronic acids, cyclic and acyclic esters, benzoxaboroles and hemiesters were revealed. In cyclic esters the direction of strains was found to be controlled by the ring size effect. It was shown that the syn or anti location of substituents on O atoms is decisive for the deformations direction for both acids and acyclic esters. The greatest strains were observed in the case of benzoxaboroles which showed the highest deviation from the zero value of the resultant BVV. The out-of-plane distortions, described by the vz component of the resultant BVV, were ascertained to be useful in the identification of weak secondary interactions on the fourth coordination site of the boron centre.

16.
Artigo em Inglês | MEDLINE | ID: mdl-23978747

RESUMO

Catechol esters of ortho-methoxyalkylphenylboronic acids have been synthesized and characterized by (17)O NMR spectroscopy. The results were compared with the data for the parent acids. The influence of intramolecular and intermolecular hydrogen bonds on the properties of the boronic acids has been discussed. The (17)O NMR data for the boronic esters proved that there are no O → B interactions in the investigated compounds. This fact is connected with weak Lewis acidity of the parent acids and their low sugars' receptors activity. Crystal structure of ortho-methoxyphenylboronic acid catechol ester was determined.


Assuntos
Ácidos Borônicos/química , Catecóis/química , Cristalografia por Raios X , Ésteres/química , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares
17.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 6): o1891-2, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22719648

RESUMO

The title compound, C(18)H(17)NO(6) [systematic name: (2R,3R)-4-benzyl-amino-2-benzo-yloxy-3-hy-droxy-4-oxobutanoic acid], is the first structurally characterized unsymmetrical monoamide-monoacyl tartaric acid derivative. The mol-ecule shows a staggered conformation around the tartramide Csp(3)-Csp(3) bond with trans-oriented carboxyl and amide groups. The mol-ecular conformation is stabilized by an intra-molecular N-H⋯O hydrogen bond. In the crystal, mol-ecules are linked by O-H⋯O hydrogen bonds between the carboxyl and amide carbonyl groups, forming translational chains along [001]. Further O-H⋯O and N-H⋯O hydrogen bonds as well as weaker C-H⋯O and C-H⋯π inter-molecular inter-actions extend the supra-molecular assembly into a double-layer structure parallel to (100). There are no directional inter-actions between the double layers.

18.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 2): o414-5, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21523085

RESUMO

In the crystal structure of the title compound, C(7)H(6)BFO(2), a broad-spectrum anti-fungal drug (AN2690), the planar [maximum deviation 0.035 (1) Å] mol-ecules form centrosymmetric R(2) (2)(8) dimers via strong O-H⋯O hydrogen bonds. The dimers are arranged into layers by weak inter-molecular C-H⋯O and C-H⋯F hydrogen bonds. The symmetry of this two-dimensional supra-molecular assembly can be described by the layer group p and topologically classified as a simple uninodal four-connected two-dimensional network of a (4.4.4.4.6.6) topology. Further weak C-H⋯O inter-actions build up the three-dimensional structure.

19.
Acta Crystallogr C ; 64(Pt 4): o208-10, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18391390

RESUMO

Molecules of 2,4-dimethylbenzoic acid, C(9)H(10)O(2), form typical centrosymmetric hydrogen-bonded dimers. The carboxyl group is twisted with respect to the benzene ring and the methyl group in the ortho position shows evasive in-plane splaying. The relation between the in-plane splaying and the twist angle of the carboxyl group for various ortho-substituted dimeric derivatives of benzoic acid is presented. It shows how the steric strains are released depending on the numbers and positions of the substituents.

20.
Acta Crystallogr C ; 63(Pt 12): o720-2, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18057622

RESUMO

The asymmetric unit of the title compound, C12H18O2, contains two independent molecules. They differ only slightly in conformation but form completely different intermolecular hydrogen-bonded arrays. One molecule exhibits disorder in the hydroxy group region, but this does not influence the formation of hydrogen bonds. The bulky tert-butyl group on one side of the carbinol C atom and the benzene ring on the other side promote the formation of discrete dimeric motifs via hydrogen-bridged hydroxy groups. Dimers are further joined by strong hydroxy-methoxy O-H...O bonds to form chains with dangling alcohol groups. Weaker intermolecular C-H...O interactions mediate the formation of a two-dimensional network.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...